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The nuclear DNA content in 10 species
of chondrostean fishes was measured by
flow cytometry. The sterlet Acipenser ru-
thenus blood cells were used as an inter-
nal standard. The sterlet DNA content
was calculated on the basis of compari-
son with the Xenopus laevis blood cells,
2C = 6.30 pg. In the tetraploid A. ruthe-
nus and A. stellatus the DNA content
comprises 3.74 pg/nucleus and is practi-
cally invariant; in Huso dauricus it is al-
most the same, 3.74-3.81 pg; and in A. nu-
diventris it is a little higher, 3.88—4.04 pg.
In the oldest chondrostean, Pseudos-
caphirhynchus kaufmanni, the nuclear
DNA content is slightly lower, 2C = 3.46—
3.48 pg, and in the American paddlefish

Polyodon spathula it is lower still, 3.17
pg. In two octoploid sturgeons, A. baeri
and A. gueldenstaedti, the DNA content
is twice as high as that of the sterlet, 8.29—
8.31 and 7.86-7.88 pg, respectively; a very
similar amount, 8.24-8.42 pg, was deter-
mined in the hybrid Huso huso x A. ru-
thenus. In the Sakhalin sturgeon, A. med-
irostris (=A. mikadoi), the DNA content
is two times higher than in the octoploids,
13.93-14.73 pg; therefore its ploidy may
be 16n and the number of chromosomes
could be 500. © 1993 Wiley-Liss, Inc.
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Flow cytometry is one of the most sensitive tech-
niques used for quantifying cellular DNA (reviews in
14,52,62) and has been used to determine the nuclear
DNA content of many animal species, including verte-
brates from fishes to mammals (11,12,36,37,40,42,53,
57,58,60), and mollusks (1,19). It was also used for de-
termination of cell or sperm ploidy in fishes, amphibi-
ans, and reptiles (1,2,6,7,21,22,35,61), sex identifica-
tion in birds (45), as well as for investigation of genome
elimination of one of the parents in hybridogenetic
frogs (10,66) and hybrid fishes (27). In the present
study, we have used flow cytometry technique to mea-
sure the DNA content in species of one of the most
ancient fish groups, the chondrosteans, inhabiting the
former USSR territory. Recently the same measure-
ments were done on the American species (9).

The chondrosteans are interesting fishes not only be-
cause they are ancient and inhabit two continents, Eur-
asia and North America, but also because the species
investigated so far are tetraploids (4n=120) or oc-
toploids (8n = 240), a very unusual characteristic in ver-
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tebrates (8). The data on ploidy and DNA content de-
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by flow cytometry (the American species) is given in
Table 1. Our new results show a two-fold difference in
the DNA content between tetra- and octoploid sturgeon
species. Moreover, it appeared that in one species, the
Sakhalin sturgeon Acipenser medirostris, the nuclear
DNA content is twice that found in the octoploids. If the
chromosome number in this species is proportionally
increased, it means that the Sakhalin sturgeon has the
greatest diploid number among vertebrates, about 500
chromosomes.

MATERIALS AND METHODS
: Fishes

Fishes from the unique collection of sturgeon species
maintained in the Moscow Aquarium were used. The
names of the species, areas where they were caught,
and the number of individuals studied by us are listed
in the Table 2. It is necessary to mention that two of
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Table 1
Diploid Numbers and DNA Content in Chondrosteans®
Chromosome
Species number 2C, pg Reference
Family Acipenseridae
Acipenser baeri (Lena River, Siberia) 248 = 5 — 64
A. brevirostrum (North America) — 13.08° 9
A. fluvescens (North America) — 8.90° 9
A. gueldenstaedti (Volga River, European Russia) 250 = 8 — 4, 8, 63
A. medirostris (North America) — 8.82° 9
A. naccarii (Italy) 239 = 7 — 24
— 5.7-6.3° 23
A. nudiventris (Aral Sea) 118 = 2 — 3, 63
A. oxyrhynchus desotoi (North America) — 4.55° 9
A. ruthenus (different European populations) 116 £ 4 — 25
118 £ 2 : — 8, 63
118 £ 3 — 48
118 = 3 — 5
A. schrencki (Amur River) (240%)d — 50
A. sinensis (China) 264+ —_ ' 67
A. stellatus (Volga River, European Russia) 118 £ 2 — 8, 63
A. sturio (Italy) 116 £ 4 — 24
— 3.6¢ 23
— 3.2 43
A. transmontanus (North America) (230)° — 29
—_— 10.6¢ 30
— 9.56° 9
Huso dauricus (Amur River) (120)4 — 50
H. huso (different European populations) 116 = 4 — 24
— 3.6¢ 23
118 £ 2 — 8, 63
118 = 3 — 5
Scaphirhynchus platorhynchus (North America) 112+ 3.6¢ . 47
— 4.73 9
Family Polyodontidae
Polyodon spathula (North America) 120 — 20
— 3.9° 57
— 4.89° 9

aAll species investigated karyologically so far are listed; the DNA content values for all species studied before are given.

PDetermined by flow cytometry.

CDetermlned by microdensitometry of Feulgen-stained nuclei.

40nly macrochromosomes were counted precisely.

eChromosome No. was determined in cell cultures: the modal 2n in a spleen cell line was 219, and in a heart cell line,

237-243. )

these species, the Sakhalin sturgeon Acipenser med-
irostris and especially the large Amu-Dar shovelnose
Pseudoscaphirhynchus kaufmanni, are endangered,
while the Aral ship, A. nudiventris, has already become
extinct in the wild and only a few individuals are still
living in the Aquarium.

Sample Preparation

From each fish 0.5 m! of whele bloed was taken by a
heparinized syringe and suspended in 25 ml of 3.8%
sodium citrate with 0.02% EDTA (60). The suspensions
were stored on ice during transportation from the
Aquarium to the laboratory. Then the blood cells were
pelleted by centrifugation at 600g for 5 minutes and

resuspended in 2 ml of 0.01 M Tris pH 7.2, containing
5mM EDTA and 50 mM KCl. A part of cell suspensions
were then used for immediate staining with the remain-
der being refrigerated (4°C) after fixation with 45-50%
ethanol (32). The samples measured contained 0.5 ml of
lysis-staining buffer (the same Tris-buffer with 0.1%
Triton X-100 nd 30 pg/ml propidium iodide) and 50 pl

sion. Several microliters of the

ension was added as

‘m $:(

after 15 m
few cases (shlp, starred sturgeon) the measurements
were repeated with material fixed in 45% ethanol after
keeping it at 4°C for 2—3 days.
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Table 2
DNA Content Measurements and Descriptive Statistics in Chondrostean Species Studied®
Chromosome 2C (pg)
Species number® N 2C SD CV(%) Range (pg)
Family Acipenseridae
Acipenser ruthenus (sterlet, Volga River) 118 2 3.74 0.14 3.78 3.74
A. baeri (Siberian sturgeon, 248 2 8.31 0.18 2.19 8.29-8.31
Lena River) 8.29 0.15 1.78
A. gueldenstaedti (Russian sturgeon, 250 3 7.88 0.20 2.49 7.86-7.88
Volga River) 7.86 0.15 1.94
7.88 0.15 1.94
A. medirostris (Sakhalin sturgeon, — 4 13.93 0.89 6.40 13.93-14.73
Far East) 14.15 0.90 6.40
14.51 0.82 5.70
14.73 . 0.90 6.14
A. nudiventris (Aral ship, Aral Sea) 118 3 4.04 0.10 3.01 3.88-4.04
3.89 0.11 291
3.88 0.13 3.78
A. stellatus (starred sturgeon, 118 2 3.74 0.11 2.97 3.74
Volga River) 3.74 0.14 3.79
Huso dauricus (kaluga, Amur River) 120 2 3.74 0.13 3.54 3.74-3.81
3.81 0.10 2.74
H. huso (beluga, Volga River) 118 3 2.44 0.09 3.67 2.42-2.45
2.42 0.08 3.14
245 0.08 3.46
Huso huso x A. ruthenus, 111¢ 2 8.24 0.12 1.49 8.24-8.42
(bester, an artificial hybrid) 8.42 0.18 2.21
Pseudoscaphirhynchus — 2 3.46 0.08 2.45 3.46-3.48
kaufmanni (large Amu-Dar 3.48 0.07 2.11
shovelnose, Amu Darya River)
Family Polyodontidae
Polyodon spathula (American paddlefish) 120 1 3.17 0.10 3.26 3.17

2N, sample size; 2C, nuclear DNA content; SD, standard deviation.

For references, see Table 1.
‘Data from (5).

Flow Cytometry

DNA analysis was carried out on a EPICS-C flow
cytometer (Coulter Electronics, Hialeah, FL) with an
argon laser operated at a wavelength of 488 nm at 300
mW in a light-stabilized mode. The emitted light was
collected through a 515 nm LWP, a 560 nm dichroic,
and 600 nm LWP filters. The values of standard devi-
ations and CVs of peaks were obtained by means of
standard programs of the EPICS-C. We collected the
fluorescence values of 10,000—50,000 stained nuclei to
calculate the DNA ¢ontent relatively to the internal
standard. In the cases when the fluorescence peaks of
the sample and standard were not separated enough to
be unambiguously discriminated we tried to get infor-
mation from the differences between the CV values of
isolated constituent components and the total peak
measured in the experiment.

histograms were wider than we had been expecting,
taking into account the cytometer calibration using flu-
orescent microspheres or DNA content measurements
of other cell types. We received the best results using not
citrate, but Tris-buffer for staining and measurements.

And second, it appeared that the measurements can
be obtained on cells fixed in 45% ethanol and kept at
4°C for at least for a few days. In such measurements
the peaks in histograms became wider, the CV were
increased, but the positions of peaks of experimental
and standard samples remained as they were in the
case of non-fixed cells. It is interesting that in (42) the
authors fixed the nuclei of salamandrids and the con-
trol species (Xenopus laevis) in ethanol before making
their measurements.

We must also mention that in control experiments
with RNase present in the staining buffer, the results
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the DNA content of the sterlet which was used as an
internal standard (Fig. 1b—j). In other words, we added
an aliquot of sterlet cell suspension to every sample
under investigation, which was stained and analyzed
in parallel with the experimental one. In the case of a
. few samples there were two peaks in histograms ob-
tained (Fig. 1b,e—g), while in the others, when the DNA
content of the sterlet and the species under investiga-
tion were close, partly discriminated bimodal peaks
were seen (Fig. 1c,h). In others, one peak (Fig. 1d,i,j)
was observed, with an enlarged (as compared to the
experimental sample and the internal standard mea-
sured individually) variation coefficient.

The sterlet was selected as an internal standard be-
cause in three series of experiments it gave the same
invariant results: The DNA fluorescence peak posi-
tions were practically the same for different sterlet in-
dividuals. The DNA content for the sterlet was calcu-
lated from an experiment in which the Xenopus laevis
blood was used as an internal standard (Fig. 1a). The
results obtained from several experiments which uti-
lized microspectrophotometric and biochemical meth-
ods were virtually the same (18,26,55), 6.30 = 0.18 pg
per nucleus (26). The DNA content of the sterlet, 3.74
pg, was calculated by using the formula DNA (pg) =
6.30 pg F/S, where F and S are, respectively, the fluo-
rescence of sterlet and X. laevis nuclei. The data for the
other sturgeon species was calculated according to the
same formula, DNA (pg) = 3.74 pg (the sterlet) F/S.

From Table 2 it is clearly seen that the DNA content
in three species, the sterlet, starred sturgeon, and
kaluga, is almost the same, about 3.7 pg, while in the
ship it is a little higher, 3.9-4.0 pg, and in the big
Amu-Dar shovelnose, on the contrary, it is a little
lower, 3.5 pg. In three beluga specimens the DNA con-
tent is 1.5 times lower than in the sterlet. In two stur-
geons, Siberian and Russian, it is twice as high as in
the sterlet, 8.3 and 7.9 pg, respectively, and in the Sa-
khalin sturgeon it is increased two-fold as compared
with this quantity, 13.9-14.7 pg. In the hybrid bester,
the DNA content is twice that of the sterlet, about 8.3

pg.

DISCUSSION
A Problem of the Internal Standard

During our measurements, we tried to minimize the
experimental error caused by possible differences in
the level of staining (because of some uncertainty
in the concentration of the fluorescent dye and/or cells
in the samples) by using an internal standard method

(54,65).
The DNA content in the standard species, the sterlet,

was determined on the basis of comparison with the

blood cells of Xenopus laevis, a species with well-known
DNA content, 2C = 6.30 pg (26). We believe that such a
choice of a standard allowed us to i
an with commonly used chicken erythrocytes

a J
54,56,57,65), human (9,34,57) and swine (57)

leen cells (12,53). -
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samples. The blood of Acipenser ruthenus was used as an
standard. In every histogram the A. ruthenus peak occupies channel
100. In the histogram (g) the abscissa scale has been reduced by half.
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It is well known that the level of fluorescence signals
after the staining of cell nuclei by the DNA-specific
dyes depends in general on the following factors (13—
15,39): the DNA content, the accessibility of DNA for
staining within the chromatin, and the saturation of
the chromatin under staining by the dye. As we were
interested in the DNA content, we tried to diminish the
influence of the other two factors. The use of the inter-
nal standard allowed us to minimize and control the
influence of staining level, as well as the kinetic effects
of the process of staining.

As for the second factor, the accessibility of the DNA
in the chromatin of cell nuclei under investigation, we
used the standard of the same type of cells and a rather
related organism, an amphibian Xenopus laevis. Re-
grettably, we did not have an opportunity to obtain the
erythrocytes of a bony fish, the trout, which are fre-
quently used as an internal standard for flow cytome-
try (33,65). We suppose that the difference in chroma-
tin structure which could be present in cells of different
tissues of phylogenetically distant animals, such as
fishes and mammals, can influence and even change
the results of measurements and turn them to a non-
proportional correlation of the DNA content. At least
the dependence of the accessibility of different types of
chromatin compaction to the dyes is well known
(16,17,37,43). That is why the use of chicken or mam-
malian standards for measurements of the DNA con-
tent in cells of fishes (36,56,57) seems incorrect to us.
Apparently, the use of nonadequate standards (the
swine (57) or human (9) leukocytes) caused the differ-
ence in values of the paddlefish Polyodon spathula
DNA content determined in (57), (9), and by us, 3.90,
4.89, and 3.17 pg, respectively. Possibly, the use of hu-
man blood as the internal standard resulted in slightly
increased DNA values for the chondrostean species
studied in (9) as compared with the previous cytospec-
trophotometry (Table 1) and our flow cytometry (Table
2) data.

Because of analogous considerations we do not de-
scribe the results of experiments with Hoechst 33258:
although histograms with small CV values could be
obtained with this dye, it is AT-base pair specific (28).
This specificity can result in a change in fluorescence
signals caused not only by the difference in the DNA
content, but also by variations in the AT-content (see,
for instance, 36). Using propidium iodide allowed us to
diminish the influence of this factor.

The DNA Content in Sturgeons

It is evident from Table 2 that the DNA content per
nuclei in the sterlet and starred sturgeon is the same
and 1nvarlable 3 74 pg, the kaluga a representatlve of

chondrosteans has a shghtly d c;eased DNA content
3.47 pg/nuclei. The representative of the second chon-

drostean family, the paddlefish Polyodon spathula, has
a still lower DNA content, 3.17 pg/nucleus. To our sur-
prise, the beluga specimens investigated had a 1.5
times lower DNA amount (not shown in Fig. 1), 2.44
pg/nucleus, than the sterlet or a representative of the
same genus, the kaluga Huso dauricus, which has the
same chromosome number as the beluga and sterlet,
about 120 chromosomes (Table 1). Previous measure-
ments of the DNA content in the erythrocytes of H.
huso specimens from Italy made by the microspectro-
photometry of Feulgen-stained nuclei showed a 1.5
times higher value, 3.6 pg/nuclei (23). Possibly, these
data point to some taxonomical difference of beluga
forms from these two populations. On the contrary, the
Aral ship Acipenser nudiventris, has an increased DNA
content as compared with the sterlet: 3.88-4.04 pg/
nucleus. It is interesting that the preceding cytophoto-
metric measurements gave close results, 3.2-3.6 pg/
nucleus for the species we have not studied, Acipenser
sturio, and Scaphirhynchus platorhynchus (Table 1).

The sterlet, ship, starred sturgeon, beluga, kaluga,
and paddlefish are ancient tetraploids (8) having about
120 chromosomes (Table 1). Taking into consideration
that the large Amu-Dar shovelnose has almost the
same DNA content as these species enumerated, one
can conclude that it is also a tetraploid with the same
chromosome number. The DNA content can be consid-
ered as an additional proof of the tetraploidy of the
species under consideration: In most diploid teleosts
the DNA content is about 2.0 pg/nucleus (31), and only
in fishes of tetraploid origin it is two times and more
higher, as in salmonids, 4.5-5.7 pg/nucleus (36).

The DNA content in the Russian and Siberian stur-
geons is twice that of the sterlet, 7.87 and 8.30 pg/
nucleus, respectively (Table 2). This data confirms the
octoploid nature of these species (8; Table 1). It is nec-
essary to stress that the genome size differs a little in
these octoploid species with the same chromosome
number, 2n =250. It is not clear if the DNA content in
the third octoploid species, the Adriatic sturgeon Aci-
penser naccarit, is really lower (5.7—-6.3 pg/nucleus; Ta-
ble 1) because the lower value could be a result of the
cytophotometric method of measurement used in (19).
The cause of a high DNA content, 8.24—8.42 pg/nu-
cleus, in the bester individuals (artificial hybrids be-
tween the beluga Huso huso and the sterlet Acipenser
ruthenus) investigated by us is not clear. It is known
that the basic chromosome number in three genera-
tions of such hybrids does not differ from that of paren-
tal species but a gradual displacement of karyotypic
parameters toward those of the sterlet occurs (5). The
latter species has evidently not only invariable DNA
content, but also a “dominant” karyotype
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the basis of DNA content one can propose that its kary-
otype probably consists of 500 chromosomes. In other
words, the Sakhalin sturgeon might have the largest
chromosome number in vertebrates.

It is supposed that the same species, the green stur-
geon A. medirostris, also inhabits the Pacific coast of
Canada and the United States (33). According to flow
cytometric measurements of Blacklidge and Bidwell
(9), the DNA content in the American representatives
is 8.82 pg/nucleus. Therefore, the American green stur-
geon seems to be an octoploid and perhaps another spe-
cies, differing from the Sakhalin sturgeon in ploidy.
These data support an old point of view that the Asian
form of A. medirostris is at least a subspecies, A. m.
mikadoi (41,49), or even a species, A. mikadol.

As for the other American species (not taking into
consideration that the values in (9) seem to be a little
high), it is evident that only two of them, Acipenser
oxyrhynchus desotoi and Scaphirhynchus platorhyn-
chus, are tetraploids (Table 1), and have DNA contents
comparable to that in the tetraploid Eurasian species
(Table 2). A. fluvescens and the American A. mediros-
tris are octoploids, while the ploidy of A. brevirostrum,
according to Blacklidge and Bidwell (9), is 12C. These
authors hypothesize that this species could be formed
after a duplication of genome of spontaneous ancestor
triploids. Most probably, the ploidy of A. brevirostrum
is similar to that of the Sakhalin sturgeon and equals
16n. However, it will only be known for sure after cy-
togenetic analysis. It is not clear if the slightly high
DNA amount in the white sturgeon, A. transmontanus,
9.46 or 10.6 pg (Table 1), reflects also an increase in
ploidy more than 8n. It is interesting that within this
species two forms of fishes differing in the genome size
have been found: The mean DNA content of the Snake
River white sturgeon, 9.115 pg/nucleus, is significantly
(P < .05) smaller than that of the Columbia River or
the San Francisco Bay white sturgeon, 9.587 and 9.548
pg/nucleus, respectively (9). Possibly, these data point
to some taxonomic difference between these forms.

On the whole, a conclusion can be made that the
investigation of the DNA content in chondrosteans by
flow cytometry allowed us to show the existence of a
polyploid row, 4n-8n-16n, in these fishes, a situation
which is extremely unusual for vertebrates.
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